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The effect of transcription factors on human gene expression
can now be quantified owing to a new computational
approach. The method was successfully applied to the
cases of the cell cycle program, and for liver-specific gene
expression.

Transcriptional regulation of gene expression plays a major
role in the acquisition of cell identity during embryogenesis
and shapes cellular response to various stimuli. Understanding
how transcription regulatory networks are encoded in the
genome represents one of the major challenges in contempor-
ary genomics. The genome era opened the door to the
investigation of a systems-map of transcriptional regulation.
A static view of the map is provided by the wiring scheme
of the network, which is encoded by combinations of cis-
regulatory sequences (or motifs) within genomic regulatory
regions. On the other hand, probing the transcriptome
with expression microarrays provides snapshots of the
network output and reveals its dynamics. A pioneering study
that systematically established a link between sequence and
expression (Tavazoie et al, 1999) was based on the notion that
coexpressed transcripts should also be coregulated. A search
for common motifs in promoters of coclustered genes
revealed shared sequence motifs among similarly expressed
genes (Tavazoie et al, 1999). While very effective, the method
has shortcomings: deciding on the number, size, and tightness
of clusters is not straightforward since we do not know the
degree of coherence of genes that belong to the same
transcriptional program a priori. Consequently, correlation
between clusters and motifs is not a one-to-one relationship
(Bussemaker et al, 2001); often many genes in a cluster
do not contain any known motif, and not all genes that
contain a motif belong to the cluster from which it was
derived. Furthermore, motif combinatorics could not be
easily deduced. For instance, two motifs may be derived
from a cluster either because they truly synergize in
regulating the cluster’s genes, or simply because they
form alternative regulatory programs that converged onto
a similar pattern (Pilpel et al, 2001). A way to overcome
these obstacles was to reverse the flow of information,
by starting with candidate motifs and testing their
regulatory effect on expression (Figure 1). While providing
good results in the simple case of yeast (Bussemaker et al,
2001; Pilpel et al, 2001), a major challenge was the more
complicated case of mammalian promoters. In a recent study,
currently published in Molecular Systems Biology, Michael
Zhang and co-workers made a considerable advance in the
analysis of transcriptional regulation in human cells (Das et al,
2006).

Key to the analysis made by the authors is the controlled
use of the multivariate adaptive regression splines (MARS)
methodology (Friedman, 1991). MARS is a sophisticated
algorithm that adaptively fits data to statistical models, which
account for response thresholds and response strengths.
Moreover, it can inherently deal with more complex inter-
action terms, corresponding here to the effect of multiple
regulatory motifs. Clearly, these are desirable properties when
analyzing expression data in response to binding to sequence
motifs. However, sophistication comes at a price: if the input
data (motif scores) and the response data (gene expression)
are sufficiently large and noisy, MARS will often produce
biologically nonsignificant results despite its internal controls.
The work discussed here presents a computational protocol
that is a step forward in overcoming this formidable challenge
when facing mammalian transcription data. The authors start
with a set of 521 known motifs, and generate a score for each
one describing its match to each gene based on the similarity
of the promoter sequence to that motif. Next, each motif is
assigned a score based on its ability to explain (or predict) the
expression data all by itself (a ‘reduction in variance’ score).
The motifs are then sorted by decreasing order based on that
score, and most interestingly, they seem to represent a bi-
modal population, with mediocre motifs separated from high
scoring ones by a discernable and, thus, useful gap. The list of
sorted motifs is used to prepare sublists of prioritized motifs,
and MARS is run on such sublists. The final output from MARS
is a minimal set of motifs that, when considered individually, in
pairs, or in triplets, produce the best prediction of the condition-
specific expression levels. The identified motifs are thus good
candidates for biologically significant control elements regulat-
ing the genes involved in those physiological processes that
were active when the microarray snapshot was taken.

The authors demonstrated the utility of the approach for
cases in which only a few expression profiles are available and,
therefore, clustering is relatively ineffective. For example,
beginning by modeling expression levels as measured in liver
cells, they identified three single motifs and five motif pairs
that are good predictors of expression in this tissue, suggesting
a role in liver-specific expression. Reassuringly, most of the
blindly discovered motifs and motif pairs were already
implicated in determining liver-specific expression, with two
pairs being novel in this context. Choosing one of the major
transcription factors that is associated with one of the motifs,
HNF-1, they went on to use the optimal model to identify HNF-
1 targets in an extended set of genes. They found 38 such
targets, of which 29 had experimental support, whereas the
other nine displayed strong HNF-1 binding characteristics.
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Even for time-course expression profiles, the Das et al
approach may be advantageous over the clustering approach
when searching for stage-specific regulators, for example.
Taking human cell cycle data with 19 time-point profiles, but
analyzing each time point individually, the authors identified
some 20 individual motifs and 10 motif pairs that are involved
in specific stages of the process. Many of these were known;
for some of the rest, the authors presented experimental
evidence that related them to cell cycle. Specifically, they
provided additional supporting evidence that the well-known
cell cycle regulator, E2F, regulates nonoverlapping sets of
genes in the G1/S and G2/M phases of the cell cycle.

Regulatory motif identification is one side of the coin, and
identification of functional targets of such regulators is the
other. Discriminating true targets from false positives remains
a major challenge when the binding sites are degenerate, as
is often the case for mammals. In the present study, Das et al
demonstrated the potential of their method to do such
discrimination by identifying and validating new potential
direct E2F targets, two of which are known to play a role in
hepatocellular carcinoma progression.

What are the challenges that are still ahead of us on our way
to fully deciphering expression regulation? To begin with, the
interaction terms as implemented in MARS may correspond to
an ‘AND’ gate—that is, two transcription factors are required
simultaneously to induce transcription—but are less appro-
priate for other types of interaction (such as ‘OR’ gates), which
are clearly frequently operating in transcription networks.
The authors make a significant step forward by proposing
that the linear function they utilize is a proxy for the gene’s
transcription induction function. However, when more de-
tailed molecular processes will be considered in the future, the
systematic mapping between statistical models and kinetic
models is likely to be more difficult. And beyond transcription,
other stages in the gene expression process, that are heavily
regulated too, are much less understood. For example, steady-
state mRNA levels reflect a balance between transcript

production and degradation. While promoters contain infor-
mation needed to tune mRNA synthesis, other genic regions,
such as the 30-untranslated regions, are involved in determin-
ing the transcript stability. Future models should combine
information from both regions to predict accurately steady-
state mRNA levels. Furthermore, models of gene expression
should incorporate the various stages in translation control as
well. Experimental technologies to probe these processes are
beginning to emerge (cf. Wang et al, 2002; Arava et al, 2003)
and new bioinformatic tools have to be developed to extract
efficiently regulatory principles from the new data. For that
purpose, more insight will be required regarding the relation-
ship between the statistical models and the underlying kinetics
and thermodynamics. With regard to analyzing transcription,
we are in relatively good shape, as demonstrated by the
present paper, when it comes to the other challenges we are
only at the beginning of the road.
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Figure 1 The classical approach (blue arrows, top) for deciphering transcription network is to start with expression data typically gathered at multiple time points during
a process or in different tissues (left), to cluster coexpressed genes along the time profile (middle), and then to look for shared motifs within each cluster (right). In the
approach (red arrows bottom) developed by Das et al in human cells, and described in previous works in yeast (Bussemaker et al, 2001; Pilpel et al, 2001), the process
is reversed—starting from known motifs, and by-passing the clustering stage, motifs or combinations thereof are analyzed for their impact on gene expression under a
specific condition (time point, tissue, treatment, etc.).
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